Sumsets
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1586 Accepted Submission(s): 609
Problem Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7: 1) 1+1+1+1+1+1+1 2) 1+1+1+1+1+2 3) 1+1+1+2+2 4) 1+1+1+4 5) 1+2+2+2 6) 1+2+4 Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6
/* 讨论版 */如果所求的n为奇数,那么所求的分解结果中必含有1,因此,直接将n-1的分拆结果中添加一个1即可 为s[n-1]如果所求的n为偶数,那么n的分解结果分两种情况1. 含有1 这种情况可以直接在n-1的分解结果中添加一个1即可 s[n-1]2. 不含有1,那么分解因子的都是偶数,将每个分解的因子都除以2,刚好是n/2的分解结果,并且可以与之一一对应,这种情况有 s[n/2]所以,状态转移方程:如果i为奇数, s[i] = s[i-1]如果i为偶数,s[i] = s[i-1] + s[i/2]#include#define N 1000000#define MOD 1000000000int n,s[N+2];int main(){ s[1]=1; s[2]=2; int i=3; while(i<=N) { s[i++]=s[i-1]; s[i++]=(s[i-2]+s[i>>1])%MOD; } while(scanf("%d",&n)!=EOF) printf("%d\n",s[n]); return 0;}